SWITCH
 The Swiss Education \& Research Network

Packet Capture and Analysis

Simon Leinen simon@switch.ch

Basic Packet Capturing Tools

tcpdump

- Captures and summarizes packets
- Can read/write from/to files in "libpcap" format

Ethereal

- Subsumes tcpdump's functionality
- Graphical (Ethereal) and traditional (tethereal) user interfaces
- Extensible design

貫 Abundance of protocol "dissectors" even for new/exotic protocols

- Includes many useful analysis tools
- Works under Windows (requires WinPcap)

These tools can be combined

- Use tcpdump (possibly remotely) to capture packets to .pcap file
- Analyze later using Ethereal
- Ethereal understands many other trace file formats (Solaris snoop etc.)

Packet Tracing Caveats

Capture enough（you can always filter later）
－tcpdump＇s default capture length is small（96 bytes）
貫 use something like－s 1540 if you are interested in payloads
－Seemingly unrelated traffic can impact performance
貫 E．g．Web pages from foo．example．com may load slowly because of the images from advertisements．example．net
貫 But may have to filter aggressively when there is a lot of background traffic
Collecting on several points can be very useful
－On the endpoints of the communication
－Near＂suspicious＂intermediate points（firewall）
－Synchronized clocks（e．g．by NTP）are very useful for matching traces Address－to－name resolution can slow display and causes traffic
－With tcpdump，consider using－n or tracing to file（－w file）

Exercises

http://192.168.1.70/gn2/
...or in the tech-ws/capture/examples directory on the memory stick broken-site-1.pcap - failed connection to HTTP server broken-site-2.pcap - successful transfer from same HTTP server broken-site-3.pcap - transfer that breaks in the middle iperf-upstream.pcap - iperf server->client, seen at server iperf-downstream.pcap - iperf server->client, seen at client

SWITCH

The Swiss Education \& Research Network

