
TCP Acknowledgements
In TCP's , the receiver the data it receives, so that the sender can advance the window and send new data. As sliding-window scheme acknowledges
originally specified, TCP's acknowledgements ("ACKs") are : the receiver tells the sender how much data it has received. More cumulative consecutive
recently, were introduced to allow more fine-grained acknowledgements of received data.selective acknowledgements

Delayed Acknowledgements and "ack every other"

RFC 831 first suggested a (Delayed ACK) strategy, where a receiver doesn't always immediately acknowledge segments as it delayed acknowledgement
receives them. This recommendation was carried forth and specified in more detail in RFC 1122 and RFC 5681 (formerly known as RFC 2581). RFC 5681
mandates that an acknowledgement be sent for at least every other full-size segment, and that no more than 500ms expire before any segment is
acknowledged.

The resulting behavior is that, for longer transfers, acknowledgements are only sent for every two segments received ("ack every other"). This is in order to
reduce the amount of reverse flow traffic (and in particular the number of small packets). For transactional (request/response) traffic, the delayed
acknowledgement strategy often makes it possible to "piggy-back" acknowledgements on response data segments.

A TCP segment which is an acknowledgement i.e. has no payload, is termed a .only pure ack

Delayed Acknowledgments should be taken into account when doing . As an illustration, see this for the Linux kernel from RTT estimation change note
Gavin McCullagh.

Critique on Delayed ACKs

John Nagle nicely explains problems with current implementations of delayed ACK in :a comment to a thread on Hacker News

Here's how to think about that. A delayed ACK is a bet. You're betting that there will be a reply, upon with an ACK can be
piggybacked, before the fixed timer runs out. If the fixed timer runs out, and you have to send an ACK as a separate message, you
lost the bet. Current TCP implementations will happily lose that bet forever without turning off the ACK delay. That's just wrong.

The right answer is to track wins and losses on delayed and non-delayed ACKs. Don't turn on ACK delay unless you're sending a lot
of non-delayed ACKs closely followed by packets on which the ACK could have been piggybacked. Turn it off when a delayed ACK
has to be sent.

Duplicate Acknowledgements

A duplicate acknowledgement (DUPACK) is one with the same acknowledgement number as its predecessor - it signifies that the TCP receiver has
received a segment newer than the one it was expecting i.e. it has missed a segment. The missed segment might not be lost, it might just be re-ordered.
For this reason the TCP sender will not assume data loss on the first DUPACK but (by default) on the third DUPACK, when it will, as per RFC 5681,
perform a "Fast Retransmit", by sending the segment again without waiting for a timeout. DUPACKs are never delayed; they are sent immediately the TCP
receiver detects an out-of-order segment.

"Quickack mode" in Linux

The TCP implementation in Linux has a special receive-side feature that temporarily disables delayed acknowledgements/ack-every-other when the
receiver thinks that the sender is in slow-start mode. This speeds up the slow-start phase when is high. This "quickack mode" can also be explicitly RTT
enabled or disabled with using the option. The Linux modification has been because it makes Linux' slow-start setsockopt() TCP_QUICKACK criticized
more aggressive than other TCPs' (that follow the SHOULDs in RFC 5681), without sufficient validation of its effects.

"Stretch ACKs"

Techniques such as and (and to some level, Delayed ACKs as well as ACKs that are lost or delayed on the path) can cause ACKs to cover LRO GRO
many more than the two segments suggested by the historic TCP standards. Although ACKs in TCP have always been defined as "cumulative" (with the
exception of), some congestion control algorithms have trouble with ACKs that are "stretched" in this way. In January 2015, SACKs a patch set was

 to the Linux kernel network development with the goal to improve the behavior of the and congestion control algorithms when submitted Reno CUBIC
faced with stretch ACKs.

References

TCP Congestion Control, RFC 5681, M. Allman, V. Paxson, E. Blanton, September 2009
RFC 813, , D. Clark, July 1982Window and Acknowledgement Strategy in TCP
RFC 1122, , R. Braden (Ed.), October 1989Requirements for Internet Hosts -- Communication Layers

– Main.TobyRodwell - 2005-04-05

– Main.SimonLeinen - 2007-01-07 - 2015-01-28

https://wiki.geant.org/display/EK/WindowBasedTransmission
https://wiki.geant.org/display/EK/SelectiveAcknowledgements
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=2072c228c9a05c004a230620196da7607cdcc5b6
https://news.ycombinator.com/item?id=8381957
https://wiki.geant.org/display/EK/Round+Trip+Time
http://www.postel.org/pipermail/end2end-interest/2007-January/thread.html#6403
https://wiki.geant.org/pages/viewpage.action?pageId=121340571
https://wiki.geant.org/pages/viewpage.action?pageId=121340575
https://wiki.geant.org/display/EK/SelectiveAcknowledgements
http://permalink.gmane.org/gmane.linux.network/348209
http://permalink.gmane.org/gmane.linux.network/348209
https://wiki.geant.org/display/EK/TCP+Reno
https://wiki.geant.org/display/EK/Cubic+TCP
ftp://ftp.rfc-editor.org/in-notes/rfc5681.txt
ftp://ftp.rfc-editor.org/in-notes/rfc813.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1122.txt

	TCP Acknowledgements

