Introduction

This document defines APIs and protocols to enable integration between different web-services, servers and clients.

Open Collaboration Services v2.0 (“OCS v2.0”) consists of a set of APl endpoints mainly targeted to be implemented by
consumers and providers of file storage / sharing servers (“cloud”).

The goal is to enable Integration of cloud services, web services and social communities with each other, with desktop and
mobile applications. This must be done in a decentralized and federated way, free and secure, privacy protected and vendor
independent. OCS aims to solve these problems.

Notational Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119.

Terminology

e “Cloud”:
o Referring to file storage / sharing servers.
e “Consumer”:
o A desktop or mobile application or web service that access services that are provided by a server.
e “Service provider” or “server”:
o A web service or server who provides a open collaboration services compatible APIs.
e “Provider service list”:
o A JSON configuration endpoint which specifies which services are provided by a server or service provider.
e “Module” or “service”:
o OCS is aimed to be a modular system allowing providers to only implement the required subsets. Any functionality
is thus encapsulated in so called “modules” or “services” which are all optional.

Security Considerations

TRANSMISSION LAYER

All data transfer SHOULD be TLS encrypted to ensure the integrity and security of transferred data.

Consumers MUST properly validate the certificate chain and in case of an error cancel the connection and SHOULD notify the
user about the occurred problem.

For enhanced security Consumers MAY follow the Public Key Pinning Extension for HTTP (RFC 7469) as well as other HTTP
security best practices.

https://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc7469.txt

SECRETS

Any secrets used to exchange data MUST be generated using a strong random number generator, such as /dev/urandom or
another cryptographically secure replacement.

Performance / Scalability

The service must be usable by a lot of users in parallel. Because of that it is important to build the architecture in a scalable way.
Every component of the architecture must be cluster enabled, accessible in a parallel way and stateless.

COOKIES

To work together with load-balanced environments consumers SHOULD resend any cookies as defined in RFC 6265. As stated in
the “Authentication” section any Basic Auth authentication header MUST be resend as the session referenced by the cookie MAY
expire.

It shall be noted that OCS endpoints MUST behave properly regardless whether cookies are resent or not.

Formats / Encoding

To avoid interoperability problems this section defines formats and encoding that OCS endpoints as well as consumers MUST
obey.

ENCODING

Any data sent and received MUST be UTF-8 encoded.

DATE AND TIME FORMAT

All dates and time representations MUST be in ISO 8601 format. This means all of the following values are valid:

e Date
o 2015-06-03
Combined date and time in UTC
o 2015-06-03T13:21:58+00:00
o 2015-06-03T13:21:58Z
Week
o 2015-W23
Date with week number
o 2015-W23-3
Ordinal date
o 2015-154

Consumers as well as endpoints SHALL NOT make assumption about the representation as long as it follows ISO 8601. The
preferred variation is though the regular Date representation “YYYY-MM-DD”.

If an invalid date format has been provided consumers and endpoints MAY stop processing the data.

OCS Responses

http://tools.ietf.org/html/rfc6265
http://www.iso.org/iso/home/standards/iso8601.htm

Example of a JSON OCS response, be aware that empty fields MUST have a value of nuii:

"meta": {

"status": "ok",

"statuscode": 200,

"message": null

1,
"data": {

"users": [
"Frank",
"admin",
"test",

"testl"

Example of a XML OCS response, be aware that empty fields MUST still be existent:

<?xml version="1.0"?>

<0cCs>

<meta>
<status>ok</status>
<statuscode>200</statuscode>
<message/>

</meta>

<data>

<users>

<element>Frank</element>
<element>admin</element>
<element>test</element>
<element>testl</element>
</users>
</data>

</ocs>

OCS endpoints MUST be able to output data in a XML format as well as a JSON representation. This means that the returned
XML output SHALL NOT contain any attributes as these cannot be mapped properly to a JSON object.

To specify the encoding a GET parameter format can be send by the consumer with one of the following values:

® json

o Returns a JSON formatted output, the Content-Type MUST be set t0 application/json; charset=utf-8
e xml

o Returns a XML formatted output, the Content-Type MUST be set to text/xml; charset=UTF-8

A OCS response MUST consist of the following elements:

e ocs: Array that contains the whole response
o meta: Array that contains meta information
m status: The status of the response, either “ok” or “fail”. MUST be “ok” if statuscode is set to 200, “fail”
otherwise.

= statuscode: The OCS status code of the response. 200 indicates a successful response.
= message: An optional message that MAY contain a status message, such as a error message.
o data: Array that contains the actual response, content of the array depends completely on the endpoint.

€ The statuscode returned in the OCS response MAY differ by the HTTP status code. In the following module
specifications the returned OCS and HTTP status codes are specified. It is encouraged to use restful status codes and use
the same OCS and HTTP status code.

Authentication

GET /{endpoint} /1.1

alhost
on: Basic YWRtaW46YWRtawW4=

OCS-REQUEST: true

Make sure to replace ywrtawasywrRtawa= with the encoded credentials.

Clients SHOULD directly try HTTP Basic Authentication and not try to perform a Digest Authentication based authentication. This
will save the amount of requests originating to the endpoint.

Authentication is performed by sending a Basic HTTP Authentication header. Thus OCS endpoints MUST support the Basic Auth
Access Authentication system as defined in RFC2617.

The credentials provided in the authentication header MUST be UTF-8 encoded. Taking contrasea as example the correct
encoding would be Y29udHIhc2xpswE=, any other encoding such as ISO-8859-1 (v29udHIhc2xxYQ==) is considered invalid and MUST
NOT be used.

OCS compatible APIs MAY use cookies as defined in RFC 6265 to authenticate future requests as well, if after successful
authentication the endpoint sends further cookies clients SHOULD resend these for future requests. However, any request MUST
then include the Basic Authentication header as well as the provided cookies as the session might expire. When resending
cookies consumers MUST add the following HTTP header to all requests: 0cS-REQUEST: true.

OCS endpoints MUST in all cases handle connections correctly regardless whether cookies are sent.

© The baseb4-encoded authentication header does not necessarily have to be the user credentials. The credentials could
also be an unique and secret token used for authentication. (Token-based authentication)

Service Discovery

The provider service list are used by OCS for service discovery purposes to allow mapping the provided services and endpoint
URls.

https://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc6265

Every service provider MUST provide a provider service list located as /ocs-provider/ under the directory of the application. For
example if there would be an OCS compatible application running at https://demo.owncloud.org/ the provider service list MUST be
located at https://demo.owncloud.org/ocs-provider/. If the application would run on https://mycloud.com/mycloud/ the service MUST
be accessible from https://mycloud.com/mycloud/ocs-provider/.

Serving the provider service list at this location allows providers to generate them dynamically also in environments where
programming languages pose limitations on the routing, such as PHP. In the PHP scenario this would mean that a index.php file
stored under /ocs-provider/ would be served.

A provider service list consists of the following elements:

1. version: Version identifier
o Integer indicating the current version of the supported OCS standard. (e.g. int(2))
2. services: Array of services
o A of services served by OCS from this instance. Services are defined as following:
o key: Name of the endpoints
o version: Version of the specific endpoint (may differ from the OCS version)
o endpoints: Array of endpoint names and the relative URI - key: Name of the endpoint - value: Relative URI to the
endpoint

A provider service definition MUST look like the following (the endpoint URI MAY be changed by providers):

"version": 2,
"services": {
"FEDERATED_SHARING": {
"version": 1,
"endpoints": {
"share":

"accept":

I

"PRIVATE_DATA": {

"version": 1,

"endpoints": {
"getattribute": "/ocs/privatedata/getattribute”,
"setattribute": " r attribute”,

"deleteattribute”: "/ocs/privatadata/deleteattribute”

In this case if an instruction of the module PRIVATE_DATA serving at demo.example.org/mycloud/defines to interact on the endpoint
getattribute the absolute URI would resolve to demo.example.org/mycloud/ocs/privatedata/getattribute.

Cross-Origin communication

Due to the Same-Origin-Policy it is usually not possible for browsers to access the content of files hosted on another domain. To
enable browser-based clients, providers are encouraged to set proper CORS headers on the resource to allow cross-domain
access to the provider service list.

If a provider service list cannot be accessed by a consumer, consumers MUST perform the OCS request and in case of a 4e4

failure consider the endpoint to be not existent.

Versioning

When declaring a version within the service the service MUST stay backwards compatible on the defined URI. Providers MAY
remove the endpoint but SHALL NOT make an existing endpoint incompatible.

An idiomatic approach to this would be to prepend versions to the URI, such as /api/1/ for version 1 of an endpoint and /api/2/
for the backwards incompatible version 2 of an API.

Modules

OCS is based on modules providing specialized functionalities. A service provider MAY only implement a smaller subset of a
defined module.

Providers MUST ensure that only supported modules are listed in the provider service list. Providers MAY not include modules
into the providers service list if the endpoints are considered private API.

The current specified modules are:

o FEDERATED_SHARING:
o Allows different cloud service providers to share files over different instances.

e PRIVATE_DATA:

o Key-Value store allowing consumers to store and retrieve values.
SHARING:

o Allows consumers to share local files.
PROVISIONING:

o Allows consumers to manage users, groups and applications on the instance.
ACTIVITY:

o Activity stream provided by the server

More modules are subject to be added to future OCS versions. Furthermore providers MAY provide their own modules if these
get a vendor prefix. (e.g. “owncloud-print” for a fictional printing API of the “ownCloud” product)

Federated Sharing

A valid service definition looks as following:

"version": 2,

"services": {

"FEDERATED_SHARING": {

"version": 1,

"endpoints": {

"share": "/ocs/v2.php/cloud/shares",

"webdav": "/public.php/webdav/"

The “FEDERATED_SHARING” module allows consumers to share files between service providers compatible with this module.
This module handles the following tasks:

e Sending a share offer to other providers (share)

e Accepting a share offer from other providers (share)
e Denying a share offer from other providers (share)

e Unsharing a previously shared file (share)

e Accessing shared files using WebDAV (webdav)

Sending a share offer

This endpoint takes share offers from remote instances, once the recipient has logged-in he is expected to accept or deny the
share.

HTTP REQUEST

POST /ocs/v2.php/cloud/shares /1.1
: localhost
: 119

: application w-form-urlencoded

shareWith=RecipientName&token=MyRandomToken&name=Documents&remoteId=5&owner=ShareingUser&remote=http://localhost

POST http://example.com/{share}

QUERY PARAMETERS
Parameter Default Description
shareWith User name of the receiving user.
token Unique and secret token used to access the file.
name Name of the file or folder.
remoteld Unique ID to identify the file on the sender side, used for accepting and denying shares.
owner User name of the sending user.
remote URI of the sending instance.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<0Cs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response is, in case of success, a OCS success message. In error cases the following OCS status codes MUST be
used:

OCS status code HTTP status code Meaning
400 400 Invalid parameters
503 503 If the server does not support Federated Sharing (i.e. disabled by administrator)

In case of an error consumers SHOULD be made aware of the error. The OCS message MUST be used by the endpoint to specify
a proper error message that can be used to analyze issues.

€ This request needs to be sent to the receiving instance by the sending instance. This request is not expected to be sent
directly by an user.

Accept a share offer

After a share offer has been received the receiving instance should notify the user in question and give the possibility to accept or
deny a share offer. Using this API call a federated share can be accepted.

Providers MAY inform the sending user if a share has been accepted.
HTTP REQUEST

Assuming a provider wants to accept the share request of the file sent in the share endpoint (remoteld: 6, token:
TjumMoB1as7iz1ice) the following request needs to be sent to the remote (http://sender.example.org):

POST /ocs/v2.php/cloud/shares/6/accept /1.1
: sender.example.org
: application/ w-form-urlencoded

21

token=TjuMOBlas7iZ1c6

POST http://example.com/{share}/{remoteId}/accept

URL PARAMETERS

Parameter Default

remoteld Received remote1d of the share.

QUERY PARAMETERS

Parameter Default Description
token Unique and secret token used to access the file.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST in any case be a OCS success message even if the deny did not work. The only exception being
503 when Federated Sharing is not enabled.

OCS status code HTTP status code Meaning

503 503 If the server does not support Federated Sharing (i.e. disabled by administrator)

€ This request needs to be sent to the sending instance by the receiving instance. This request is not expected to be sent
directly by an user.

Reject a share

This endpoint informs the sender that the recipient rejected the share. This endpoint is also intended to be used if the user first
accepted the share and later decides to unshare it.

HTTP REQUEST

Assuming a provider wants to reject the share request of the file sent in the share endpoint (remoteld: 6, token:
TjumMoB1as7izice) the following request needs to be sent to the remote (http://sender.example.org):

POST /ocs/v2.php/cloud/shares/6/decline /1.1
: sender.example.org
: application/» -form-urlencoded

¢ 21

token=TjuMOBlas7iZ1c6

POST http://example.com/{share}/{remoteId}/accept

URL PARAMETERS

Parameter Default

remoteld Received remoteld of the share.
QUERY PARAMETERS

Parameter Default Description

token Unique and secret token used to access the file.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST in any case be a OCS success message even if the deny did not work. The only exception being
503 when Federated Sharing is not enabled.

OCS status code HTTP status code Meaning
400 400 Invalid parameters
503 503 If the server does not support Federated Sharing (i.e. disabled by administrator)

€ This request needs to be sent to the sending instance by the receiving instance. This request is not expected to be sent
directly by an user.

Unshare a file

Allows owners of shared files and folders to notify recipient of a revocation of the access permissions.

€ Instances MUST be able to handle not accessible remote storages gracefully even when a folder has not been
unshared. The unshared endpoint is there to indicate to a remote host that a storage has finally removed and is not just
temporarily unavailable.

HTTP REQUEST

Assuming a provider wants to unshare the share of the file sent to the share endpoint (remoteld: 6, token:

TjuMoB1as7iz1ice) the following request needs to be sent to the receiver (http://receiver.example.org):

POST /ocs/v2.php/cloud/shares/8/unshare?format=json /1.1

www-form-urlencoded

token=kW1gROTRKXW9Jwk

POST http://example.com/{share}/{remoteId}/unshare

URL PARAMETERS

Parameter Default

remoteld Received remote1d of the share.

QUERY PARAMETERS

Parameter Default Description
token Unique and secret token used to access the file.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST in any case be a OCS success message even if the deny did not work. The only exception being
503 when Federated Sharing is not enabled.

OCS status code HTTP status code Meaning
400 400 Invalid parameters
503 503 If the server does not support Federated Sharing (i.e. disabled by administrator)

€ This request needs to be sent to the sending instance by the receiving instance. This request is not expected to be sent
directly by an user.

Accessing shared files

To access the file sharedfile.txt of the federated share with the token kwigroTRKkXw9Iwk the following request has to
be sent. Note that as password the base64 representation of kwigRoTRKxw9Iwk: is used. The ending : is required.

GET /public.php/webdav/sharedfile.txt /1.1

: localhost
: Basic alcxZ1ISVFILWFc5SndrOg==

: true

Shares files may be accessed using WebDAV (RFC 4918) under the specified webdav endpoint using HTTP Basic Authentication.

The credentials will be of the value token:, note the empty password field.

Sharing

A valid service definition looks as following:

"version": 2,
"services": {
"SHARING": {

"version": 1,

"endpoints": {

"share": "/ocs/v2.php/apps/files_sharing/api/v1l/shares"

The sHaRING module allows to handle file sharing on the same cloud instance. It offers the following functions:

Get a list of shares (share)

Get a list of shared files in a folder (share)
Get information about a specific share (share)
Create a new share (share)

Delete an existing share (share)

Update an existing share (share)

IR

List of shares

Get a list of all shared files for the currently logged-in user.
HTTP REQUEST

Lists all shares of the user admin with the password admin:

https://tools.ietf.org/html/rfc4918

GET /ocs/v2.php/apps/files_sharing/api/v1l/shares /1.1

: localhost

WRtaW4=

POST http://example.org/{share}

QUERY PARAMETERS

Parameter Default

shared_with_me false

path A

reshares false

subfiles false
RESPONSE

In case there are shares

Description

Whether files shared with the user should get displayed. Defaults to false, true to only display
shares that the user received.

Path to folder, if empty no restriction is set.
Whether reshares should get returned. (optional)

Whether all shares within the folder should be returned. (optional)

a successful OCS response object MUST be returned by the server, the shares MUST be

embedded in the data element and at least consist of the following elements:

<element>

<id>1</id>

<item_type>file</item_type>

<share_type>2</share_type>

<share_with>Rachel</share_with>

<path>/sharedFile.txt</path>

<permissions>1</permissions>

<expiration>2015-06-12</expiration>

<token></token>

<uid_owner>Oscar</uid_owner>

<displayname_owner>Oscar Meyer</displayname_owner>

</element>

The expected response MUST in any case be a OCS success message containing the share data.

OCS status code HTTP status code Meaning

400 400

404 404

Not a folder (if the subfile argument was used)

User has no shared files or folder does not exist.

997 401 Authentication was not successful.

Get information about a share

Get information about a specific share using the share id.
HTTP REQUEST

Following request would request information about the share with the ID “1” under the context of the user “admin”.

GET /ocs/v2.php/apps/files_sharing/api/v1l/shares/1 /1.1

: localhost

POST http://example.com/{share}/{shareId}

URL PARAMETERS

Parameter Default Description
shareld ID of the requested share.
RESPONSE

In case of success, a OCS success message with the following data structure is returned:

<element>
<id>1</id>
<item_type>file</item_type>
<share_type>2</share_type>
<share_with>Rachel</share_with>

<path>/sharedFile.txt</path>

<permissions>1</permissions>

<expiration>2015-06-12</expiration>

<token></token>

<uid_owner>Oscar</uid_owner>

<displayname_owner>Oscar Meyer</displayname_owner>

</element>

The expected response is, in case of success, a OCS success message containing the data structure. In error cases the following
OCS status codes MUST be used:

OCS status code HTTP status code Meaning
404 200 Share does not exist.

997 401 Authentication was not successful.

In case of an error consumers SHOULD be made aware of the error. The OCS message MUST be used by the endpoint to specify
a proper error message that can be used to analyze issues.

Create a new share

Shares a file or folder with an user on the same instance.

HTTP REQUEST

Following request will share the file /welcome.txt of the user admin with the user test:

POST /ocs/v2.php/apps/files_sharing/api/v1l/shares /1.1
: localhost
: Basic YWRtaW46YWRtaW4=
: true
: 44

: application form-urlencoded

path=/welcome.txt&shareType=0&shareWith=test

POST http://example.com/{share}

QUERY PARAMETERS
Parameter Default Description
path Absolute path to the file/folder which should be shared.
shareType 0 = user; 1 = group; 3 = public link
shareWith User or group id with which the file or folder should be shared.
publicUpload false Whether to allow public upload to a public shared folder.
password Password to protect a publicly shared file with.
permissions 31 1 =read; 2 = update; 4 = create; 8 = delete; 16 = share; 31 = all
RESPONSE

In case the share has been created a successful OCS response object MUST be returned by the server, the shares
MUST be embedded in the data element and at least consist of the following elements:

<element>

<id>1</id>

<item_type>file</item_type>

<share_type>2</share_type>

<share_with>Rachel</share_with>

<path>/sharedFile.txt</path>

<permissions>1</permissions>

<expiration>2015-06-12</expiration>

<token></token>

<uid_owner>Oscar</uid_owner>

<displayname_owner>Oscar Meyer</displayname_owner>

</element>

The expected response is, in case of success, a OCS success message with the defined data structure. In error cases the
following OCS status codes MUST be used:

OCS status code HTTP status code Meaning

400 400 Unknown share type.

404 404 File could not get shared.

997 401 Authentication was not successful.

Unshare an existing share

Unshares a shared file or folder.
HTTP REQUEST

Following request will delete the share with the id 1 of the user admin:

DELETE /ocs/v2.php/apps/files_sharing/api/vl/shares/1 /1.1

: localhost

c YWRtal

DELETE http://example.com/{share}/{shareld}
URL PARAMETERS

Parameter Default Description

shareld ID of the share to revoke.

RESPONSE

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response is, in case of success, a OCS success message with the defined data structure. In error cases the
following OCS status codes MUST be used:

OCS status code HTTP status code Meaning
404 200 Share could not get unshared.
997 401 Authentication was not successful.

Update an existing share

Updates an existing share such as adjusting the permissions or the password.
HTTP REQUEST

Following request will set the permissions of the share with the id 9 to "31:

PUT /ocs/v2.php/apps/files_sharing/api/v1l/shares/9 /1.1

: localhost
: Basic YWRtaW46YWRtaW4=
: true
: 14

: application/x-www-form-urlencoded

permissions=31

PUT http://example.com/{share}/{shareld}

URL PARAMETERS
Parameter Default Description
shareld ID of the share to update.

QUERY PARAMETERS
Parameter Default Description
publicUpload false Whether to allow public upload to a public shared folder

password Password to protect a publicly shared file with

permissions 1 =read; 2 = update; 4 = create; 8 = delete; 16 = share; 31 = all
RESPONSE

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response is, in case of success, a OCS success message with the defined data structure. In error cases the
following OCS status codes MUST be used:

OCS status code HTTP status code Meaning

400 400 Invalid parameters.

403 200 Public upload disabled by the admin.
404 404 Share could not get updated.

997 401 Authentication was not successful.

Activity
A valid service definition looks as following:

"version": 2,

"services": {

"ACTIVITY": {
"version"
"endpoints": {

"list": "/ocs/v2.php/cloud/activity"

The “ACTIVITY” module allows consumers to show a list of actions happening on the cloud service. This can for example be a
collection of recently created or deleted files. This module has only a 1ist endpoint used to gather this list.

HTTP REQUEST

Following request would request the data of the user admin:

GET /ocs/v2.php/cloud/activity /1.1

: localhost
: Basic YWRtaW46YWRtaW4d=

: true

POST http://example.com/{list}

QUERY PARAMETERS
Parameter Default Description
start 0 Optional value with which event to start.
count Optional value on how many values should get returned.

RESPONSE

<?xml version="1.0"?>

<0cCs>

<meta>
<status>ok</status>
<statuscode>200</statuscode>
<message/>

</meta>

<data>

<element>

<id>2</id>

<subject>You deleted ownCloudUserManual.pdf</subject>
<message></message>

<file>/ownCloudUserManual.pdf</file>
<link>http://example.org/index.php/apps/files?dir=%2F</link>

<date>2015-06-10T709:42:58+00:00</date>
</element>
<element>
<id>1</id>
<subject>You created test.txt</subject>
<message></message>
<file>/test.txt</file>
<link>http://example.org/index.php/apps/files?dir=%2F</link>
<date>2015-06-10T09:22:38+00:00</date>
</element>
</data>

</ocs>

The response MUST be a OCS success message or a 993 forbidden statuscode if the user is not authenticated. In case of a
success the response must contain the defined data blob.

In case a start or count parameter is specified endpoints MUST return the newest entries first to allow consumers to chunk the
event transmission.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Provisoning [Experimental]

A valid service definition looks as following:

"version": 2,

"services": {
"PROVISIONING": {
"version": 1,

"endpoints

"user": v2.php/cloud/users",

/ocs/v2.php/cloud

.php/cloud

The “PROVISONING” module allows management of users and groups on a service provider. Specifically it supports the following
functionalities:

1. Managing users (user)
o Create users
o Edit users
o Delete users
o List users
2. Managing groups (groups)
o Create groups
o Manage subadmin privileges
o Manage group members
o Delete groups
List groups
3. Managing applications (apps)
o Enable applications
o Delete applications
o List applications

(o}

This module is likely to require administrative privileges for accessing and service providers SHOULD review their implementation
carefully.

Create user

Creates a new user on the server.
HTTP REQUEST

Creates an user “newUser” with the password “newPassword”:

POST /ocs/v2.php/cloud/users Jilil

: localhost

YWRtaW46YWRtaW4=

: application/x n-form-urlencoded

userid=newUser&password=newPassword

POST http://example.org/{user}

QUERY PARAMETERS
Parameter Default Description
userid Username to create.
password Password of the user.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning
400 400 User already exists or invalid input data.
997 401 Authentication was not successful.

Get list of users

Retrieves a list of users on the server.
HTTP REQUEST

Request a list of users:

GET /ocs/v2.php/cloud/users /1.1

: localhost

: Basic YWRtaW46YWRtaW4=

: true

GET http://example.org/{user}

QUERY PARAMETERS
Parameter Default Description
search Username to search for.
limit How many users to list.
offset Optional offset.
RESPONSE

In case of success, a OCS success message with the mbedded user names is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data>
<users>
<element>admin</element>
<element>JonDoe</element>
<element>JaneMeyer</element>
</users>
</data>
</ocs>

</ocs>

The expected response MUST, in case of success, be a OCS success message containing the user names as data element.

OCS status code HTTP status code Meaning
997 401 Authentication was not successful.
Get a user

Retrieves information about a single user.

HTTP REQUEST

To request information about an user called “admin” the following request would be valid:

GET /ocs/v2.php/cloud/users/admin /1.1

: localhost

: Basic YWRtaW46YWRtaWd=

: true

GET http://example.com/{user}/{userId}

URL PARAMETERS

Parameter Default
userld User name of the user to lookup.
RESPONSE

In case the action was successfully a successful OCS response object MUST be returned by the server. The data
element MUST contain a blob as following, values MAY be empty or more values MAY get returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>
<statuscode>200</statuscode>
<message/>

</meta>

<data>
<email>user@example.org</email>

<enabled>true</enabled>

<quota>
<free>80</free>
<used>20</used>
<total>200</total>

<relative>20</relative>

</quota>

<displayname>Hans User</displayname>

</data>

</ocs>

In case the action was successfully a successful OCS response object MUST be returned by the server.

OCS status code HTTP status code Meaning
404 404 User not found.
997 401 Authentication was not successful.

Edit user attributes

Edits attributes related to a user. Users are able to edit email, displayname and password; admins can also edit the quota value.

HTTP REQUEST

Following request would change the password of the user “admin” to “NewUserPassword”;

PUT /ocs/v2.php/cloud/users/admin /1.1
: localhost

: Basic YWRtaW46YWRtaW4=

w-form-urlencoded

key=password&value=NewUserPassword

PUT http://example.com/{user}/{uid}

URL PARAMETERS

Parameter Default

userld User name of the user to edit.

QUERY PARAMETERS

Parameter Default Description
key Field to edit. One of “email”, “quota”, “displayname” or “password”.
value New value for the field.

RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful or user not found.

Delete user

Deletes a user from the instance.

HTTP REQUEST

Following request would delete the user named “test”:

DELETE /ocs/v2.php/cloud/users/test /1.1

: localhost

(WRtaW46YWRtaW4=

DELETE http://example.com/{user}/{userId}

URL PARAMETERS

Parameter Default
userld User ID of the user to delete.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

In case the action was successfully a successful OCS response object MUST be returned by the server.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Get group memberships

Retrieves a list of groups the specified user is member of.
HTTP REQUEST

Following request would get the membership information of the user named “test”:

GET /ocs/v2.php/cloud/users/test/groups /1.1

: localhost

: B YWRtaW46YWRtaW4=

GET http://example.com/{user}/{userId}/groups

URL PARAMETERS

Parameter Default
userld User ID of the user to delete.
RESPONSE

In case of success, a OCS success message with the list of group memberships is returned:

<?xml version="1.0"?>
<ocs>
<meta>

<statuscode>200</statuscode>

<status>ok</status>

</meta>
<data>

<groups>

<element>admin</element>
<element>groupl</element>
</groups>
</data>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. The data element must
contain an array of the user groups.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Add user to group

Adds the specified user to the specified group.

HTTP REQUEST

Following request adds the user “test” to the group “admin”:

POST /ocs/v2.php/cloud/users/test/groups Jilil
: localhos
: Basic YWRtaW46YWRtaW4=
: true
1 13

: application/ form-urlencoded

groupid=admin

POST http://example.org/{user}/{userId}/groups

REQUEST PARAMETERS

Parameter Default Description

userld User to add to a group.
QUERY PARAMETERS

Parameter Default Description

groupid ID of the group that the user should get added to.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning
400 400 Failed to add user to group.
997 401 Authentication was not successful.

Remove user from group

Removes the specified user to the specified group.
HTTP REQUEST

Following request removes the user “test” from the group “admin”:

DELETE /ocs/v2.php/cloud/users/test/groups /1.1

3asic YWRtaW46YWRtaW4d=

: true

: applicatio form-urlen

groupid=admin

DELETE http://example.org/{user}/{userId}/groups

REQUEST PARAMETERS

Parameter Default Description

userld User to remove from a group.

QUERY PARAMETERS

Parameter Default Description
groupid ID of the group that the user should get removed from.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

In case the action was successfully a successful OCS response object MUST be returned by the server. According to general
requirements of DELETE being an idempotent operation success is even reported in case the user does not exist. The status
code in case of a successful operation is 204/No Content.

OCS status code HTTP status code Meaning
400 400 Failed to remove user from group.
997 401 Authentication was not successful.

Promote user to subadmin

Makes a user the subadmin of a group.
HTTP REQUEST

Following request would make the user “test” a subadmin of the group “admin”:

POST /ocs/vl.php/cloud/users/test/subadmins /1.1

: localhost

: application -form-urlencoded

groupid=admin

POST http://example.com/{user}/{userId}/subadmins

URL PARAMETERS
Parameter Default

userld User ID of the user to promote.

QUERY PARAMETERS

Parameter Default
groupid Group that the user should become subadmin of.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server.

OCS status code HTTP status code Meaning
101 200 User or group not found.
997 401 Authentication was not successful.

Remove subadmin privileges

Removes the subadmin rights for the user specified from the group specified.
HTTP REQUEST

Following request would remove the subadmin privileges of user “test” from “admin”:

DELETE /ocs/vl.php/cloud/users/test/subadmins /1.1
¢ local

WRtaWa=

: application/x-www-form-urlencoded

groupid=admin

DELETE http://example.com/{user}/{userId}/subadmins

URL PARAMETERS

Parameter Default

userld User ID of the user to demote.

QUERY PARAMETERS

Parameter Default
groupid Group that the user should become a regular member of of.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. According to general
requirements of DELETE being an idempotent operation success is even reported in case the user does not exist. The status
code in case of a successful operation is 204/No Content.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Get subadmin privileges of user

Returns the groups in which the user is a subadmin.
HTTP REQUEST

Following request would list all groups that the user “test” is a subadmin of.

GET /ocs/v1.php/cloud/users/test/subadmins /1.1

: localhost

WRtaW46YWRtaWa=

GET http://example.com/{user}/{userId}/subadmins

URL PARAMETERS

Parameter Default

userld User ID of the user to get membership from.

RESPONSE

In case of success, a OCS success message with a data element containing a list of groups:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>

<data>
<element>AnotherGroup</element>
<element>MyTestGroup</element>

</data>

</ocs>

In case the action was successfully a successful OCS response object MUST be returned by the server. The data element MUST
contain a list of groups.

OCS status code HTTP status code Meaning
101 200 User does not exist.
997 401 Authentication was not successful.

Get groups on the server

Retrieves a list of groups from the cloud server.
HTTP REQUEST

Following request would get a list of all groups on the server:

GET /ocs/v1.php/cloud/groups /1.1

: localhost

: Basic YWRt

: true

GET http://example.com/{groups}

Parameter Default Description
search Filter to search for.

limit Optional limit.

offset Optional offset.

RESPONSE

In case of success, a OCS success message with a data element containing a list of groups:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>

<data>
<element>AnotherGroup</element>
<element>MyTestGroup</element>

</data>

</ocs>

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Create a new group

Creates a new group.

HTTP REQUEST

Following request would create a group with the name “NewGroup”:

POST /ocs/v1.php/cloud/groups

: localhost

v-form-urlen

groupid=NewGroup

POST http://example.com/{groups}

QUERY PARAMETERS

Parameter Default Description
groupid Name of the group to create.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server.

OCS status code HTTP status code Meaning
102 200 Group already exists.
997 401 Authentication was not successful.

Get members of a group

Retrieves a list of group members.
HTTP REQUEST

Following request would get the membership information of the user named “test”:

GET /ocs/vl.php/cloud/groups/admin /1.1

: localhost
¢ Basic YWRtaW46YWRtaW4=

: true

GET http://example.com/{groups}/{groupId}

URL PARAMETERS

Parameter Default
groupld The ID of the group to request membership from.
RESPONSE

In case of success, a OCS success message with the list of group memberships is returned:

<?xml version="1.0"?>
<ocs>
<meta>
<statuscode>200</statuscode>

<status>ok</status>

</meta>

<data>

<groups>

<element>JohnDoe</element>

<element>JaneMeyer</element>

</groups>
</data>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. The data element must
contain an array of the user groups.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Get subadmins of a group

Returns subadmins of the group.

HTTP REQUEST

Following request would get the membership information of the user named “test”:

GET /ocs/v1.php/cloud/groups/admin/subadmins /1.1

: localhost
: Basic YWRtaW46YWRtaW4=

: true

GET http://example.com/{groups}/{groupId}/subadmins

URL PARAMETERS

Parameter Default
groupld The ID of the group to request a list of subadmins from.
RESPONSE

In case of success, a OCS success message with the list of subadmins is returned:

<?xml version="1.0"?>
<ocs>
<meta>
<statuscode>200</statuscode>
<status>ok</status>
</meta>
<data>

<groups>

<element>JohnDoe</element>

<element>JaneMeyer</element>

</groups>
</data>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. The data element must
contain an array of the subadmins.

OCS status code HTTP status code Meaning
404 404 Group does not exist.
997 401 Authentication was not successful.

Delete a group

Removes a group.

HTTP REQUEST

Following request would delete the group “test”:

DELETE /ocs/vl.php/cloud/groups/test /1.1

: localhost
: Basic YWRtaW46YWRtaW4=

: true

DELETE http://example.com/{groups}/{groupId}

URL PARAMETERS

Parameter Default
groupld ID of the group to delete.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. According to general
requirements of DELETE being an idempotent operation success is even reported in case the user does not exist. The status
code in case of a successful operation is 204/No Content.

OCS status code HTTP status code Meaning

101 200 Group does not exist.

102 200 Failed to delete group.

997 401 Authentication was not successful.

Get list of installed apps

Returns a list of apps installed on the cloud server.

HTTP REQUEST

Following request would get a list of all installed apps.

GET /ocs/v1.php/cloud/apps /1.1

: localhost
: Basic YWRtaW46YWRtaW4=

: true

GET http://example.com/{apps}
RESPONSE

In case of success, a OCS success message with the list of installed apps is returned:

<?xml version="1.0"?>

<0cs>

<meta>
<status>ok</status>
<statuscode>200</statuscode>
<message/>

</meta>

<data>

<apps>

<element>activity</element>

<element>audit_monitor</element>
</apps>
</data>

</ocs>

If the action could be performed a successful OCS response object MUST be returned by the server. The data element must
contain an array of the installed apps.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Get application information

Get information about the specified application.
HTTP REQUEST

Following request would get information about the app “files”:

GET /ocs/v2.php/cloud/apps/files /1.1

: localhos

GET example.org/{apps}/{appId}

URL PARAMETERS

Parameter Default
appld ID of the app to get more information from.
RESPONSE

In case of success, a OCS success message with more information about the app:

<?xml version="1.0"?>
<ocs>
<meta>
<statuscode>200</statuscode>
<status>ok</status>
</meta>

<data>
<id>files</id>

<name>Files</name>

<description>File Management</description>

</data>

</ocs>

In case the action was successfully a successful OCS response object MUST be returned by the server. The data element MUST
contain a list of information about the app.

OCS status code HTTP status code Meaning
404 404 Application not found.
997 401 Authentication was not successful.

Enable application

Enable an app.

HTTP REQUEST

Enables the application “activity”:

POST /ocs/v2.php/cloud/apps/activity /1.1

: localhost

YWRtaW46YWRtaW4=

POST example.org/{apps}/{appIld}

REQUEST PARAMETERS

Parameter Default Description

appld ID of the application to enable.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Disable application

Disables the specified app.
HTTP REQUEST

Disables the application “activity”:

DELETE /ocs/v2.php/cloud/apps/activity /1.1

: localhost

(WRtaW46YWRtaW4=

DELETE example.org/{apps}/{appIld}

REQUEST PARAMETERS

Parameter Default Description
appld ID of the application to disable.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>
<ocs>

<meta>

<status>ok</status>

<statuscode>200</statuscode>
<message/>

</meta>

<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Private Data [Experimental]

A valid service definition looks as following:

tribute"

The prIvaTE_DATA module allows consumers to store data in a key-value storage. The store supports multiple sub-stores. This
module handles the following tasks:

1. Storing values in the store (“store”)

2. Reading data from the store (“read”)

3. Deleting data from the store (“delete”)

In case of a server error or connection problem consumers MUST handle this gracefully.

Set value

Sets a value in the key-value store for the currently logged-in user.

HTTP REQUEST

Stores the value “myValue” in the key “myKey” in the “myStore” store:

POST /ocs/v2.php/privatedata/setattribute/myStore/myKey /1.1

: localhos

: application/x-www-form-urlencoded

value=myValue

POST example.org/{store}/{storeName}/{key}

URL PARAMETERS

Parameter Default Description
storeName Store under which the value should get stored.
key Key of the value.
REQUEST PARAMETERS
Parameter Default Description
value Value of the key.
RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Get values of key

Get all value of a key stored within a specific store for the currently logged-in user.

HTTP REQUEST

Get the value of the the key “myKey” in the “myStore” store:

GET /ocs/v2.php/privatedata/getattribute/myStore/myKey /1.1

¢ loce

GET example.org/{read}/{storeName}/{key}

URL PARAMETERS

Parameter Default Description
storeName Store under which the value should get looked-up.
key Key of the value to look-up.

RESPONSE

In case there is an entry a successful OCS response object MUST be returned by the server, the values MUST be
embedded in the data element and at least consist of the following elements:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>
<statuscode>200</statuscode>
<message/>

</meta>

<data>

<element>

<key>MyKey</key>

<app>MyStore</app>

<value>ValueToStore</value>
</element>
</data>

</ocs>

The expected response MUST, in case of success, be a OCS success message containing the requested key-value entry.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

Delete entry

Get the value of a key stored within a specific store for the currently logged-in user.

HTTP REQUEST

Deletes the key “myKey” in the “myStore” store:

POST /ocs/v2.php/privatedata/deleteattribute/myStore/myKey /1.1

: localk

WRtal4=

POST example.org/{delete}/{storeName}/{key}

URL PARAMETERS

Parameter Default Description
storeName Store under which the value should get deleted.
key Key to delete.

RESPONSE

In case of success, a OCS success message without further details is returned:

<?xml version="1.0"?>

<ocs>

<meta>
<status>ok</status>

<statuscode>200</statuscode>

<message/>

</meta>
<data/>

</ocs>

The expected response MUST, in case of success, be a OCS success message.

OCS status code HTTP status code Meaning

997 401 Authentication was not successful.

