...
Expand | |||||
---|---|---|---|---|---|
| |||||
The RARE project objective is to provide a networking solution to Research & Education institution use cases. While we witnessed the birth of several control plane such as GNU Zebra, Bird, exaBGP, etc. The common point of these softwares is that they don't have the capability (yet) to be coupled easily with a hardware dataplane. Simply put, these software control plane cannot be used without specific/important development in order to run on an equipment able to forward nx100GE links at a high Mpps rate. There have been attempts with DPDK and other kernel bypass mechanism, that enabled higher throughput processing capability, but this is not comparable to commercial/vendor equipment's packet processing power. P4:
|
...
Expand | ||
---|---|---|
| ||
P4 use cases are mostly inherently linked to the P4 target you plan to use in order to run your P4 program: A comprehensive list can be found here.
It is the P4Lang virtual model that emulates a PISA architecture. You can run it on a VM and start writing your first P4 program and load it on simple_switch and/or simple_switch_grpc (if you plan to use P4Runtime). While this is a great solution in order to learn P4 and sketch your packet processing algorithm, it is not recommended for production use.
This target also implements a PISA architecture and proposes a Virtual model so that you can validate your algorithm. However, once validated on the virtual model, you can load your program into a hardware switch that is running a NPU called TOFINO and his elder its bigger brother TOFINO2. While TOFINO is able to handle 6.4 Tbps of traffic rate, TOFINO2 simply doubles this. (12 Tbps) In addition to that, TOFINO2 exposes additional inherent capabilities like bigger buffer, memory and TCAM compared to his little brother. |
...