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TCP Selective Acknowledgements (SACK)
Selective Acknowledgements are a refinement of TCP's traditional "cumulative" .acknowledgements

SACKs allow a receiver to acknowledge non-consecutive data, so that the sender can retransmit only what is missing at the receivers end. This is 
particularly helpful on paths with a large  (BDP).bandwidth-delay product

TCP may experience poor performance when multiple packets are lost from one window of data. With the limited information available from cumulative 
acknowledgments, a TCP sender can only learn about a single lost packet per round trip time. An aggressive sender could choose to retransmit packets 
early, but such retransmitted segments may have already been successfully received.

A Selective Acknowledgment (SACK) mechanism, combined with a selective repeat retransmission policy, can help to overcome these limitations. The 
receiving TCP sends back SACK packets to the sender informing the sender of data that has been received. The sender can then retransmit only the 
missing data segments.

Multiple packet losses from a window of data can have a catastrophic effect on TCP throughput. TCP uses a cumulative acknowledgment scheme in which 
received segments that are not at the left edge of the receive window are not acknowledged. This forces the sender to either wait a roundtrip time to find 
out about each lost packet, or to unnecessarily retransmit segments which have been correctly received. With the cumulative acknowledgment scheme, 
multiple dropped segments generally cause TCP to lose its ACK-based clock, reducing overall throughput. Selective Acknowledgment (SACK) is a 
strategy which corrects this behavior in the face of multiple dropped segments. With selective acknowledgments, the data receiver can inform the sender 
about all segments that have arrived successfully, so the sender need retransmit only the segments that have actually been lost.

The selective acknowledgment extension uses two TCP options. The first is an enabling option, "SACK-permitted", which may be sent in a SYN segment 
to indicate that the SACK option can be used once the connection is established. The other is the SACK option itself, which may be sent over an 
established connection once permission has been given by SACK-permitted.

Blackholing Issues

Enabling SACK globally used to be somewhat risky, because in some parts of the Internet, TCP SYN packets offering/requesting the SACK capability 
were filtered, causing connection attempts to fail. By now, it seems that the increased deployment of SACK has caused most of these filters to disappear.

Performance Issues

Sometimes it is not recommended to enable SACK feature, e.g. for the Linux 2.4.x TCP SACK implementation suffers from significant performance 
degradation in case of a burst of packet loss. People from CERN observed that a burst of packet loss considerably affects TCP connections with large 
bandwidth delay product (several MBytes), because the TCP connection doesn't recover as it should. After a burst of loss, the throughput measured in 
their testbed is close to zero during 70 seconds. This behavior is not compliant with TCP's RFC. A timeout should occur after a few RTTs because one of 
the loss couldn't be repaired quickly enough and the sender should go back into slow start.

For more information take a look at http://sravot.home.cern.ch/sravot/Networking/TCP_performance/tcp_bug.htm

Additionally, work done at Hamilton Institute found that SACK processing in the Linux kernel is inefficient even for later 2.6 kernels, where at 1Gbps 
networks performance for a long file transfer can lose about 100Mbps of potential. Most of these issues should have been fixed in Linux kernel 2.6.16.

Detailed Explanation

The following is closely based on a mail that Baruch Even sent to the pert-discuss mailing list on 25 Jan '07:

The Linux TCP SACK handling code has in the past been extremely inefficient - there were multiple passes on a linked list which holds all the sent 
packets. This linked list on a large BDP link can span 20,000 packets. This meant multiple traversals of this list take longer than it takes for another packet 
to come. Pretty quickly after a loss with SACK the sender's incoming queue fills up and ACKs start getting dropped. There used to be an anti-DoS 
mechanism that would drop all packets until the queue had emptied - with a default of 1000 packets that took a long time and could easily drop all the 
outstanding ACKs resulting in a great degradation of performance. This value is set with proc/sys/net/core/netdev_max_backlog

This situation has been slightly improved in that though there is still a 1000 packet limit for the network queue, it acts as a normal buffer i.e. packets are 
accepted as soon as the queue dips below 1000 again.

Kernel 2.6.19 should be the preferred kernel now for high speed networks. It is believed it has the fixes for all former major issues (at least those fixes that 
were accepted to the kernel), but it should be noted that some other (more minor) bugs have appeared, and will need to be fixed in future releases.

Historical Note

Selective acknowledgement schemes were known long before they were added to TCP. Noel Chiappa  that Xerox' PUP protocols had them in a mentioned
posting to the  mailing list in August 1986. Vint Cerf  with a few notes about the thinking that lead to the cumulative form of the original tcp-ip responds
TCP acknowledgements.
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