
Flow Control
TCP Flow Control

 This topic describes the enhancement of classical "Van Jacobson" or congestion control. There have been many suggestions for Note: Reno Tahoe
improving this mechanism - see the topic on .high-speed TCP variants

TCP flow control and window size adjustment is mainly based on two key mechanism: and Slow Start Additive Increase/Multiplicative Decrease
(AIMD), also known as Congestion Avoidance. (and)RFC 793 RFC 5681

Slow Start

To avoid that a starting TCP connection floods the network, a Slow Start
mechanism was introduced in TCP. This mechanism effectively
probes to find the available bandwidth.

In addition to the window advertised by the receiver, a (Congestion Window cwnd=) value is used and the effective window size is the
 window is set initially to a value that has been evolving over the years, the lesser of the two. The starting value of the =cwnd TCP Initial

. After each acknowledgment, the window is increased by one MSS. By this algorithm, the data rate of the sender doubles each round-trip Window cwnd
time (RTT) interval (actually, taking into account , rate increases by 50% every RTT). For a properly implemented version of TCP this Delayed ACKs
increase continues until:

the advertised window size is reached
congestion (packet loss) is detected on the connection.
there is no traffic waiting to take advantage of an increased window (i.e. cwnd should only grow if it needs to)

When congestion is detected, the TCP flow-control mode is changed from to . Note that some TCP implementations Slow Start Congestion Avoidance
maintain cwnd in units of bytes, while others use units of full-sized segments.

Congestion Avoidance

Once congestion is detected (through timeout and/or duplicate ACKs), the data rate is reduced in order to let the network recover.

Slow Start uses an exponential increase in window size and thus also in data rate. uses a linear growth function (additive increase). Congestion Avoidance
This is achieved by introducing - in addition to the window - a ().cwnd slow start threshold ssthresh

As long as is less than , applies. Once is reached, is increased by at most one segment per RTT. The cwnd ssthresh Slow Start ssthresh cwnd cwnd
window continues to open with this linear rate until a congestion event is detected.

When congestion is detected, is set to half the (or to be strictly accurate, half the "Flight Size". This distinction is important if the ssthresh cwnd
implementation lets cwnd grow beyond (the receiver's declared window)).rwnd

 is either set to 1 if congestion was signalled by a timeout, forcing the sender to enter , or to if congestion was signalled by cwnd Slow Start ssthresh
duplicate ACKs and the algorithm has terminated. In either case, once the sender enters Congestion Avoidance, its rate has been reduced Fast Recovery
to half the value at the time of congestion. This multiplicative decrease causes the to close exponentially with each detected loss event.cwnd

Fast Retransmit

In , the arrival of three duplicate ACKs is interpreted as packet loss, and retransmission starts before the retransmission timer (RTO) Fast Retransmit
expires.

The missing segment will be retransmitted immediately without going through the normal retransmission queue processing. This improves performance by
eliminating delays that would suspend effective data flow on the link.

Fast Recovery

Fast Recovery is used to react quickly to a single packet loss. In Fast recovery, the receipt of 3 duplicate ACKs, while being taken to mean a loss of a
segment, does not result in a full Slow Start. This is because obviously later segments got through, and hence congestion is not stopping everything. In
fast recovery, ssthresh is set to half of the current send window size, the missing segment is retransmitted () and is set to Fast Retransmit cwnd ssthresh
plus three segments. Each additional duplicate ACK indicates that one segment has left the network at the receiver and is increased by one segment cwnd
to allow the transmission of another segment if allowed by the new . When an ACK is received for new data, is reset to the , and cwnd cwmd ssthresh
TCP enters congestion avoidance mode.

References

Congestion Avoidance and Control, V. Jacobson, Computer Communication Review, vol. 18, no. 4, pp. 314-329, August 1988, ftp://ftp.ee.lbl.gov
/papers/congavoid.ps.Z
TCP Congestion Control, RFC 5681, M. Allman, V. Paxson, E. Blanton, September 2009
Congestion Control in the RFC Series, RFC 5783, M. Welzl, W. Eddy, February 2010
Computing TCP's Retransmission Timer, RFC 6298, V. Paxson, M. Allman, J. Chu, M. Sargent, June 2011
Congestion Control in Linux TCP, P. Sarolahti, A. Kuznetsov, USENIX Annual Technical Conference 2002, Freenix Track

https://wiki.geant.org/display/EK/TCP+Reno
https://wiki.geant.org/display/EK/TCP+Tahoe
https://wiki.geant.org/display/EK/TCP+High+Speed+Variants
ftp://ftp.rfc-editor.org/in-notes/rfc793.txt
ftp://ftp.rfc-editor.org/in-notes/rfc5681.txt
https://wiki.geant.org/display/EK/TCP+Initial+Window
https://wiki.geant.org/display/EK/TCP+Initial+Window
#
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.rfc-editor.org/in-notes/rfc5681.txt
ftp://ftp.rfc-editor.org/in-notes/rfc5783.txt
ftp://ftp.rfc-editor.org/in-notes/rfc6298.txt
https://www.usenix.org/events/usenix02/tech/freenix/full_papers/sarolahti/sarolahti_html/

,The Great Internet TCP Congestion Control Census A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, B. Leong, ACM SIGMETRICS, December
2019 (, presentation , Gordon)PDF video code

– Main.UlrichSchmid - 07 Jun 2005
– Main.SimonLeinen - 27 Jan 2006 - 20 Jun 2020

https://dl.acm.org/doi/10.1145/3366693
https://www.comp.nus.edu.sg/~bleong/publications/sigmetrics2020-gordon.pdf
https://www.youtube.com/watch?v=oImBLTue6So
http://github.com/NUS-SNL/Gordon

	Flow Control

